Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22

Highlight articles

The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.

Peter D. Nooteboom, Qing Yi Feng, Cristóbal López, Emilio Hernández-García, and Henk A. Dijkstra

In austral spring 2016 the Antarctic region experienced anomalous sea ice retreat in all sectors, with sea ice extent in October and November 2016 being the lowest in the Southern Hemisphere over the observational record (1979–present). The extreme sea ice retreat was accompanied by the wettest and warmest spring on record, over large areas covering the Indian ocean, the Ross Sea, and the Weddell Sea.

Monica Ionita, Patrick Scholz, Klaus Grosfeld, and Renate Treffeisen

A key question in climate science is how the global mean surface temperature responds to changes in greenhouse gases. This dependency is quantified by the climate sensitivity, which is determined by the complex feedbacks in the climate system. In this study observations of past climate change are used to estimate this sensitivity. Our estimate is consistent with values for the equilibrium climate sensitivity estimated by complex climate models but sensitive to the use of uncertain input data.

Ragnhild Bieltvedt Skeie, Terje Berntsen, Magne Aldrin, Marit Holden, and Gunnar Myhre

Moisture recycling is the atmospheric branch of the water cycle, including evaporation and precipitation. While the physical water cycle is well-understood, the social links among the recipients of precipitation back to the sources of evaporation are not. In this work, we develop a method to determine how these social connections unfold, using a mix of quantitative and qualitative methods, finding that there are distinct types of social connections with corresponding policy and management tools.

Patrick W. Keys and Lan Wang-Erlandsson

Human-caused, climate change hazards in the ocean continue to aggravate over a very long time. For business as usual, we project the ocean oxygen content to decrease by 40% over the next thousand years. This would likely have severe consequences for marine life. Global warming and oxygen loss are linked, and meeting the warming target of the Paris Climate Agreement effectively limits related marine hazards. Developments over many thousands of years should be considered to assess marine risks.

Gianna Battaglia and Fortunat Joos

Using climate simulations, we investigate the role of water recycling in shaping the climate of low-obliquity Earth-like terra-planets. By such a mechanism feeding water back from the extra-tropics to the tropics, the planet can assume two drastically different climate states differing by more than 35 K in global temperature. We describe the bifurcation between the two states occurring upon changes in surface albedo and argue that the bistability hints at a wider habitable zone for such planets.

Sirisha Kalidindi, Christian H. Reick, Thomas Raddatz, and Martin Claussen

Large volcanic eruptions are a large source of uncertainty for decadal climate predictions. Two decadal forecasts with different initial conditions are performed to assess the question of how pre-eruption climate states influence the impact of the volcanic signal on the predictions. We show that the average global cooling response and precipitation decrease is relatively robust, but on a regional and seasonal scale, we find substantial differences that are dependent on the initial conditions.

Sebastian Illing, Christopher Kadow, Holger Pohlmann, and Claudia Timmreck

Sowing and harvest dates are a significant source of uncertainty within crop models. South Asia is one region with a large uncertainty. We aim to provide more accurate sowing and harvest dates than currently available and that are relevant for climate impact assessments. This method reproduces the present day sowing and harvest dates for most parts of India and when applied to two future periods provides a useful way of modelling potential growing season adaptations to changes in future climate.

Camilla Mathison, Chetan Deva, Pete Falloon, and Andrew J. Challinor

Around half of the carbon that humans emit into the atmosphere each year is taken up on land (by trees) and in the ocean (by absorption). We construct a simple model of carbon uptake that, unlike the complex models that are usually used, can be analysed mathematically. Our results include that changes in atmospheric carbon may affect future carbon uptake more than changes in climate. Our simple model could also study mechanisms that are currently too uncertain for complex models.

Steven J. Lade, Jonathan F. Donges, Ingo Fetzer, John M. Anderies, Christian Beer, Sarah E. Cornell, Thomas Gasser, Jon Norberg, Katherine Richardson, Johan Rockström, and Will Steffen

This paper presents a new equation for the dispersion of salinity in alluvial estuaries based on the maximum power concept. The new equation is physically based and replaces previous empirical equations. It is very useful for application in practice because in contrast to previous methods it no longer requires a calibration parameter, turning the method into a predictive method. The paper presents successful applications in more than 23 estuaries in different parts of the world.

Zhilin Zhang and Hubert H. G. Savenije

Fires damage large areas of eastern Amazon forests when ignitions from human activity coincide with droughts, while more humid central and western regions are less affected. Here, we use a fire model to estimate that fire activity could increase by an order of magnitude without climate mitigation. Our results show that avoiding further agricultural expansion can limit fire ignitions but that tackling climate change is essential to insulate the interior Amazon through the 21st century.

Yannick Le Page, Douglas Morton, Corinne Hartin, Ben Bond-Lamberty, José Miguel Cardoso Pereira, George Hurtt, and Ghassem Asrar

This review describes the general knowledge of the marine acid-base system as well as the peculiarities identified and reported for the Baltic Sea specifically. We discuss issues such as dissociation constants in the brackish water, the structure of the total alkalinity in the Baltic Sea, long-term changes in total alkalinity, and the acid-base effects of biomass production and mineralization. We identify research gaps and specify bottlenecks concerning the Baltic Sea acid-base system.

Karol Kuliński, Bernd Schneider, Beata Szymczycha, and Marcin Stokowski

Today, human interactions with the Earth system lead to complex feedbacks between social and ecological dynamics. Modeling such feedbacks explicitly in Earth system models (ESMs) requires making assumptions about individual decision making and behavior, social interaction, and their aggregation. In this overview paper, we compare different modeling approaches and techniques and highlight important consequences of modeling assumptions. We illustrate them with examples from land-use modeling.

Finn Müller-Hansen, Maja Schlüter, Michael Mäs, Jonathan F. Donges, Jakob J. Kolb, Kirsten Thonicke, and Jobst Heitzig

We provide an explanation why land temperatures respond more strongly to global warming than ocean temperatures, a robust finding in observations and models that has so far not been understood well. We explain it by the different ways by which ocean and land surfaces buffer the strong variation in solar radiation and demonstrate this with a simple, physically based model. Our explanation also illustrates why nighttime temperatures warm more strongly, another robust finding of global warming.

Axel Kleidon and Maik Renner

We present the results of a set of climate simulations designed to simulate futures in which the Earth's temperature is stabilized at the levels referred to in the 2015 Paris Agreement. We consider the necessary future emissions reductions and the aspects of extreme weather which differ significantly between the 2 and 1.5 °C climate in the simulations.

Benjamin M. Sanderson, Yangyang Xu, Claudia Tebaldi, Michael Wehner, Brian O'Neill, Alexandra Jahn, Angeline G. Pendergrass, Flavio Lehner, Warren G. Strand, Lei Lin, Reto Knutti, and Jean Francois Lamarque

Global temperature now exceeds +1.25°C relative to 1880&ndash:1920, similar to warmth of the Eemian period. Keeping warming less than 1.5°C or CO2 below 350 ppm now requires extraction of CO2 from the air. If rapid phaseout of fossil fuel emissions begins soon, most extraction can be via improved agricultural and forestry practices. In contrast, continued high emissions places a burden on young people of massive technological CO2 extraction with large risks, high costs and uncertain feasibility.

James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy

In lowland Bolivia, satellite images show rivers collapsing and the replacement of forest with savannah. This was first described in 1996 as the result of logjams (river dams created by fallen trees). I have investigated how the logjams form and affect the forest through remote sensing and fieldwork. Logjams occur nearly every year and propagate upriver until the river changes course. This region offers a unique opportunity to study how frequent forest die-off events affect biodiversity.

Umberto Lombardo

Monsoon systems have undergone abrupt changes in past climates, and theoretical considerations show that threshold behavior can follow from the internal dynamics of monsoons. So far, however, the possibility of abrupt changes has not been explored for modern monsoon systems. We analyze state-of-the-art climate model simulations and show that some models project abrupt changes in Sahel rainfall in response to a dynamic shift in the West African monsoon under 21st century climate change.

Jacob Schewe and Anders Levermann

In this paper we describe the development and application of a new spatially explicit weathering scheme within the University of Victoria Earth System Climate Model (UVic ESCM). We integrated a dataset of modern-day lithology with a number of previously devised parameterizations for weathering dependency on temperature, primary productivity, and runoff. We tested the model with simulations of future carbon cycle perturbations and confirmed the importance of silicate weathering in the long term.

Marc-Olivier Brault, H. Damon Matthews, and Lawrence A. Mysak

The Arctic has been warming much faster than the rest of the globe, including Antarctica. Here it was shown that one of the important mechanisms that sets Antarctica apart from the Arctic is heat transport from lower latitudes, and it was argued that a decrease in land height due to Antarctic melting would be favorable for increased atmospheric heat transport from midlatitudes. Other factors related to the larger Antarctic land height were also investigated.

Marc Salzmann

Emission metrics such as GWP or GTP are used to put non-CO2 species on a "CO2-equivalent" scale. In the fifth IPCC report the metrics are inconsistent, as the climate–carbon feedback is included only for CO2 but not for non-CO2 species. Here, we simulate a new impulse response function for the feedback, and we use it to correct the metrics. For instance, 1 g of CH4 is equivalent to 31 g of CO2 (instead of 28 g) following the corrected GWP100 metric. It is 34 g if other factors are also updated.

Thomas Gasser, Glen P. Peters, Jan S. Fuglestvedt, William J. Collins, Drew T. Shindell, and Philippe Ciais

There is still little understanding about the dynamics emerging from human–water interactions. As a result, policies and measures to reduce the impacts of floods and droughts often lead to unintended consequences. This paper proposes a research agenda to improve our understanding of human–water interactions, and presents an initial attempt to model the reciprocal effects between water management, droughts, and floods.

Giuliano Di Baldassarre, Fabian Martinez, Zahra Kalantari, and Alberto Viglione

We argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently to enable a systematic and rapid performance assessment of the large number of models participating in CMIP, and we announce our intention to implement such a system for CMIP6. At the same time, continuous scientific research is required to develop innovative metrics and diagnostics that help narrowing the spread in climate projections.

Veronika Eyring, Peter J. Gleckler, Christoph Heinze, Ronald J. Stouffer, Karl E. Taylor, V. Balaji, Eric Guilyardi, Sylvie Joussaume, Stephan Kindermann, Bryan N. Lawrence, Gerald A. Meehl, Mattia Righi, and Dean N. Williams

Using 3 decades of observational satellite and field data, we find that long-term changes in sea ice and sea level, plant phenology, and surface temperature are coherent with increases in atmospheric CO2 concentration and other global greenhouse gases. During the same period, natural causes of climate change should only have a net cooling long-term effect, suggesting the observed coherent pattern of changes across Earth's biological and physical systems could only be due to human activities.

A. Gonsamo, J. M. Chen, D. T. Shindell, and G. P. Asner

Carbon dioxide, while warming the Earth's surface, cools the atmosphere beyond about 15 km (the middle atmosphere). This cooling is considered a fingerprint of anthropogenic global warming, yet the physical reason behind it remains prone to misconceptions. Here we use a simple radiation model to illustrate the physical essence of stratospheric cooling, and a complex climate model to quantify how strongly different mechanisms contribute.

H. F. Goessling and S. Bathiany

A band of intense rainfall exists near the equator known as the intertropical convergence zone, which can migrate in response to climate forcings. Here, we assess such migration in response to volcanic eruptions of varying spatial structure (Northern Hemisphere, Southern Hemisphere, or an eruption fairly symmetric about the equator). We do this using model simulations of the last millennium and link results to energetic constraints and the imprint eruptions may leave behind in past records.

C. M. Colose, A. N. LeGrande, and M. Vuille

Our analysis allows us to infer maps of changing plant water-use efficiency (WUE) for 1901-2010, using atmospheric observations of temperature, humidity and CO2. Our estimated increase in global WUE is consistent with the tree-ring and eddy covariance data, but much larger than the historical WUE increases simulated by Earth System Models (ESMs). We therefore conclude that the effects of increasing CO2 on plant WUE are significantly underestimated in the latest climate projections.

S. C. Dekker, M. Groenendijk, B. B. B. Booth, C. Huntingford, and P. M. Cox

This paper analyses the behaviour of 12 tributaries of the Río Mamoré and their influence on alluvial plain dynamics. These rivers are extremely active: between 1984 and 2014, 7 of these 12 rivers underwent a total of 41 crevasses and 29 avulsions. Most of the sedimentary load of these rivers is deposited on the alluvial plains before they reach the Mamoré. Crevasses and avulsions are not controlled by ENSO cycles, but rather are the result of intrabasinal processes.

U. Lombardo

We identify six past revolutions in energy input and material cycling in Earth and human history. We find that human energy use has now reached a magnitude comparable to the biosphere, and conclude that a prospective sustainability revolution will require scaling up new solar energy technologies and the development of much more efficient material recycling systems. Our work was inspired by recognising the connections between Earth system science and industrial ecology at the "LOOPS" workshop.

T. M. Lenton, P.-P. Pichler, and H. Weisz

We find early warnings of abrupt changes in complex dynamical systems such as the climate where the usual early warning indicators do not work. In particular, these are systems that are periodically forced, for example by the annual cycle of solar insolation. We show these indicators are good theoretically in a general setting then apply them to a specific system, that of the Arctic sea ice, which has been conjectured to be close to such a tipping point. We do not find evidence of it.

M. S. Williamson, S. Bathiany, and T. M. Lenton

Using regression analysis, near-surface temperatures from several gridded data sets were investigated for the presence of components attributable to external climate forcings and to major internal climate variability modes, over the 1901-2010 period. The spatial patterns of local temperature response and their combination in globally averaged temperature were shown and discussed, with special focus on highlighting the inter-dataset contrasts.

J. Mikšovský, E. Holtanová, and P. Pišoft

Sea level will continue to rise for centuries. We investigate the option of delaying sea-level rise by pumping ocean water onto Antarctica. Due to wave propagation ice is discharged much faster back into the ocean than expected from pure advection. A millennium-scale storage of >80% of the additional ice requires a distance of >700km from the coastline. The pumping energy required to elevate ocean water to mitigate a sea-level rise of 3mm/yr exceeds 7% of current global primary energy supply.

K. Frieler, M. Mengel, and A. Levermann

Our study focused on uncertainties in terrestrial C cycling under newly developed scenarios with CMIP5. This study presents first results for examining relative uncertainties of projected terrestrial C cycling in multiple projection components. Only using our new model inter-comparison project data sets enables us to evaluate various uncertainty sources in projection periods. The information on relative uncertainties is useful for climate science and climate change impact evaluation.

K. Nishina, A. Ito, P. Falloon, A. D. Friend, D. J. Beerling, P. Ciais, D. B. Clark, R. Kahana, E. Kato, W. Lucht, M. Lomas, R. Pavlick, S. Schaphoff, L. Warszawaski, and T. Yokohata

Recent studies have identified an approximately proportional relationship between global warming and cumulative carbon emissions. This relationship – referred to as the transient climate response to cumulative carbon emissions (TCRE) – is useful for climate policy applications. We show that the TCRE is constant for cumulative emissions lower than ~1500GtC but declines for higher cumulative emissions. We also find the TCRE to decrease with increasing emission rate.

T. Herrington and K. Zickfeld

In this paper, the authors attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response.

A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Meinshausen, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler

Publications Copernicus