Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
ESD cover
Chief editors:
Baidya Roy
Earth System Dynamics (ESD) is an international scientific journal dedicated to the publication and public discussion of studies that take an interdisciplinary perspective of the functioning of the whole Earth system and global change. The overall behaviour of the Earth system is strongly shaped by the interactions among its various component systems, such as the atmosphere, cryosphere, hydrosphere, oceans, pedosphere, lithosphere, and the inner Earth, but also by life and human activity. ESD solicits contributions that investigate these various interactions and the underlying mechanisms, ways how these can be conceptualized, modelled, and quantified, predictions of the overall system behaviour to global changes, and the impacts for its habitability, humanity, and future Earth system management by human decision making.
Press Release: Deadline for climate action – Act strongly before 2035 to keep warming below 2°C 30 Aug 2018

If governments don't act decisively by 2035 to fight climate change, humanity could cross a point of no return after which limiting global warming below 2°C in 2100 will be unlikely, according to a new study by scientists in the UK and the Netherlands. The research also shows the deadline to limit warming to 1.5°C has already passed, unless radical climate action is taken. The study is published today in ESD.

New Journal Impact Factors released 27 Jun 2018

The latest Journal Citation Reports® have been published by Clarivate Analytics.

Extended agreement with the Leibniz Association 03 May 2018

As of 1 May 2018 the centralized payment of article processing charges (APCs) with the Leibniz Association has been extended to 53 Leibniz Institutions participating in the Leibniz Association's Open Access Publishing Fund.

Recent articles

Highlight articles

We determine the point of no return (PNR) for climate change, which is the latest year to take action to reduce greenhouse gases to stay, with a certain probability, within thresholds set by the Paris Agreement. For a 67 % probability and a 2 K threshold, the PNR is the year 2035 when the share of renewable energy rises by 2 % per year. We show the impact on the PNR of the speed by which emissions are cut, the risk tolerance, climate uncertainties and the potential for negative emissions.

Matthias Aengenheyster, Qing Yi Feng, Frederick van der Ploeg, and Henk A. Dijkstra

Climate change projections of temperature extremes are particularly uncertain in central Europe. We demonstrate that varying soil moisture-atmosphere feedbacks in current climate models leads to an enhancement of model differences; thus, they can explain the large uncertainties in extreme temperature projections. Using an observation-based constraint, we show that the strong drying and large increase in temperatures exhibited by models on the hottest day in central Europe are highly unlikely.

Martha M. Vogel, Jakob Zscheischler, and Sonia I. Seneviratne

Results show that an additional 6.97 million people will be exposed to droughts in China under a 1.5 ºC target relative to reference period, mostly in the east of China. Demographic change is the primary contributor to exposure. Moderate droughts contribute the most to exposure among 3 grades of drought. Our simulations suggest that drought impact on people will continue to be a large threat to China under the 1.5 ºC target. It will be helpful in guiding adaptation and mitigation strategies.

Jie Chen, Yujie Liu, Tao Pan, Yanhua Liu, Fubao Sun, and Quansheng Ge

Earth system models provide simplified accounts of human-Earth interactions. Most current models treat CO2 emissions as a homogeneously distributed forcing. However, this paper presents a new parameterization, POPEM (POpulation Parameterization for Earth Models), that computes anthropogenic CO2 emissions at a grid point scale. A major advantage of this approach is the increased capacity to understand the potential effects of localized pollutant emissions on long-term global climate statistics.

Andrés Navarro, Raúl Moreno, and Francisco J. Tapiador

The 100-year GWP is the most widely used metric for comparing the climate impact of different gases such as methane and carbon dioxide. However, there have been recent arguments for the use of different timescales. This paper uses straightforward estimates of future damages to quantitatively determine the appropriate timescale as a function of how society discounts the future and finds that the 100-year timescale is consistent with commonly used discount rates.

Marcus C. Sarofim and Michael R. Giordano

Publications Copernicus