Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.062 IF 3.062
  • IF 5-year<br/> value: 2.938 IF 5-year
  • SNIP value: 0.707 SNIP 0.707
  • IPP value: 2.516 IPP 2.516
  • SJR value: 1.399 SJR 1.399
  • h5-index value: 13 h5-index 13
ESD cover
Chief editors:
Baidya Roy

Earth System Dynamics (ESD) is an international scientific journal dedicated to the publication and public discussion of studies that take an interdisciplinary perspective of the functioning of the whole Earth system and global change. The overall behaviour of the Earth system is strongly shaped by the interactions among its various component systems, such as the atmosphere, cryosphere, hydrosphere, oceans, pedosphere, lithosphere, and the inner Earth, but also by life and human activity. ESD solicits contributions that investigate these various interactions and the underlying mechanisms, ways how these can be conceptualized, modelled, and quantified, predictions of the overall system behaviour to global changes, and the impacts for its habitability, humanity, and future Earth system management by human decision making.


Press release: 1.5°C vs 2°C global warming – new study shows why half a degree matters

21 Apr 2016

European researchers have found substantially different climate change impacts for a global warming of 1.5°C and 2°C by 2100, the two temperature limits included in the Paris climate agreement.

Introduction of post-discussion editor decision

15 Mar 2016

Earth System Dynamics has introduced the post-discussion editor decision into the review process. With this extra step, the authors are given clear instructions on how to revise their paper.

Institutional agreement for ESD authors affiliated with the Leibniz Universität Hannover

11 Jan 2016

Copernicus Publications and the Technische Informationsbibliothek (TIB) in Hanover, Germany have signed an agreement on central billing of article processing charges.

Recent articles

Highlight articles

We identify six past revolutions in energy input and material cycling in Earth and human history. We find that human energy use has now reached a magnitude comparable to the biosphere, and conclude that a prospective sustainability revolution will require scaling up new solar energy technologies and the development of much more efficient material recycling systems. Our work was inspired by recognising the connections between Earth system science and industrial ecology at the "LOOPS" workshop.

T. M. Lenton, P.-P. Pichler, and H. Weisz

We find early warnings of abrupt changes in complex dynamical systems such as the climate where the usual early warning indicators do not work. In particular, these are systems that are periodically forced, for example by the annual cycle of solar insolation. We show these indicators are good theoretically in a general setting then apply them to a specific system, that of the Arctic sea ice, which has been conjectured to be close to such a tipping point. We do not find evidence of it.

M. S. Williamson, S. Bathiany, and T. M. Lenton

Using regression analysis, near-surface temperatures from several gridded data sets were investigated for the presence of components attributable to external climate forcings and to major internal climate variability modes, over the 1901-2010 period. The spatial patterns of local temperature response and their combination in globally averaged temperature were shown and discussed, with special focus on highlighting the inter-dataset contrasts.

J. Mikšovský, E. Holtanová, and P. Pišoft

Sea level will continue to rise for centuries. We investigate the option of delaying sea-level rise by pumping ocean water onto Antarctica. Due to wave propagation ice is discharged much faster back into the ocean than expected from pure advection. A millennium-scale storage of >80% of the additional ice requires a distance of >700km from the coastline. The pumping energy required to elevate ocean water to mitigate a sea-level rise of 3mm/yr exceeds 7% of current global primary energy supply.

K. Frieler, M. Mengel, and A. Levermann

Our study focused on uncertainties in terrestrial C cycling under newly developed scenarios with CMIP5. This study presents first results for examining relative uncertainties of projected terrestrial C cycling in multiple projection components. Only using our new model inter-comparison project data sets enables us to evaluate various uncertainty sources in projection periods. The information on relative uncertainties is useful for climate science and climate change impact evaluation.

K. Nishina, A. Ito, P. Falloon, A. D. Friend, D. J. Beerling, P. Ciais, D. B. Clark, R. Kahana, E. Kato, W. Lucht, M. Lomas, R. Pavlick, S. Schaphoff, L. Warszawaski, and T. Yokohata

Publications Copernicus